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Kinetics of phase transformations for constant heating rate occurring
close to the thermodynamic transition
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Abstract

The kinetics of phase transformations has been re-examined by considering the case when this is controlled by phase growth, with nearly
instantaneous nucleation. In this case, the phase transformation is likely to occur at temperatures relatively close to the true thermodynamic
transformation temperatureT , and the growth rate vanishes on approaching this temperature. The actual solutions for nucleation and growth
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hus deviate from the classical laws proposed to describe the dependence of fraction transformed on temperature and rate o
emperature. Similarly, the Kissinger equation becomes a poor description for the dependence of the transformation peak temper
ate of change in temperature. Nevertheless, the Avrami–Nakamura approach can still be used to derive formulae for these cases
olutions were thus obtained both by numerical integration and also in the form of nearly correct approximate formulae. These
ccount for sudden deviations on approaching the transition temperature.
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. Introduction

First order phase transitions�→� can be detrimental or
f outmost importance to many materials due to effects on

mportant applications (e.g. electrical properties) or because
hey might cause collapse due to excessive lattice mismatch
etween the� and � phases. For example, the�→�
ransition in some ion conducting ceramics (e.g. Bi2O3-
r La2Mo2O9-based materials) spoils their applicability as
olid electrolytes[1,2], or limits the working temperatures.
n addition, repeated cycling between high and low tempera-
ures might lead to failure, even for low differences between
he lattice parameters of the high and low temperature phases.

The Johnson–Mehl–Avrami (JMA) theory[3,4] is often
sed to describe the fraction transformed for experiments
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performed at constant temperature. The correspon
Avrami–Nakamura models[5,6] have been proposed
analyze experiments performed on heating with vari
temperature and were successfully used to analyse the
tallisation in glass–ceramic materials. However, the mo
for non-isothermal conditions are based on the assum
that the relevant kinetic constant is nearly described
a typical Arrhenius dependence, which might be in
idated near the thermodynamic transition, as discu
below.

Detailed models have been proposed mainly for hom
neous nucleation in glass–ceramic systems[7], and also fo
phase transformations, with inclusion of the effects of s
misfit energy, as described by[8]:

I = Io exp

[−EN

RT

]
exp

[−�G∗

RT

]
(1)
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whereIo is a pre-exponential factor,EN is the energy of migra-
tion, and the thermodynamic barrier

�G ∝ γ3

(�Gv − �Gs)2
(2)

is dependent on the interfacial energyγ, the free energy of
transformation per unit volume�Gv =�G/Vm (Vm being
the molar volume), and the strain misfit energy�Gs.
Eqs.(1) and (2)thus show that the temperature dependence
of the rate of nucleation is far from simple. Most models
are thus derived on assuming simplified conditions such as
separate stages of nucleation and growth, or nearly instanta-
neous nucleation at temperatures which are close to the true
transition temperature.

The temperature dependence of the growth rate also devi-
ates from the Arrhenius dependence on approaching the
phase transition temperatureTt. Though more complex for-
mulae have been proposed for glass–ceramic systems[8,9],
the following formulae is often used to describe the temper-
ature dependence of growth rate:

U = Uo exp

[−Eg

RT

]{
1 − exp

[(
�H

R

)
(T−1 − T−1

t )

]}
(3)
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occur simultaneously:

− ln(1 − α) foIU
mtm+1 (5)

To examine the kinetics with variable temperature one
must take into account the temperature dependence of the
growth rate (Eq.(3)), and perform a change of independent
variable dt= dT/β, whereβ = dT/dt is the rate of change in
temperature. By maintaining the value ofβ throughout the
experiment, and using typical Avrami–Nakamura methods
[5,6] one obtains:

− ln(1 − α) = foNo

(
Uo

|β|
)m

[F (T )]m (6)

where

F (T ) =
∫ T

Tt

exp

[ −Eg

(RT ′)

]
dT ′

− exp

[−�H

RTt

] ∫ T

Tt

exp

[
�H − Eg

RT ′

]
dT ′ (7)

Note that�H> 0 for the �→� transition occurring at
T>Tt, and�H< 0 for the�→� atT>Tt.

Eq.(6) shows the expected effects of the rate of change in
temperature on the fraction transformed, for a selected value
of final temperatureTf , i.e.:
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Uo being a pre-exponential factor,Eg the activation energ
nd�H the enthalpy change. Eq.(3) will be assumed fo
olid–solid transformations, and will be used to empha
he deviations from commonly assumed kinetic models

. Temperature dependence of the fraction
ransformed

Nucleation may be a rather complex process[10,11],
ainly before reaching a steady state regime[12–14]. How-

ver, ready nucleation is likely to occur at internal in
aces or other discontinuities, such as grain bounda
dges, corners, dislocations, etc. For example, kinks are
ctive sites for growth and may yield nearly one-dimensi
rowth of plate-like particles by lateral movement of ledg

n these conditions, nucleation may occur readily at t
eratures which are close to the true transition tempera
nd the present analysis is thus based on the assumptio
ucleation is nearly instantaneous.

On assuming nearly instantaneous nucleation the
odel for the dependence of fraction transformedα on time

, at constant temperature, reduces to[3,4]:

ln(1 − α) ≈ foNo(Ut)m (4)

hereNo is the number of nuclei andfo is a geometrica
actor (e.g. 4π/3 for spherical particles of the new phas
nd m is the dimensionality of growth for the case
hase boundary controlled growth. The value of the Avr
oefficient increases for cases when nucleation and gr
t

n[− ln(1 − α(Tf ))] = A1(Tf ) − m ln |β| (8)

hereA1(Tf ) = ln [foNo(UoF(Tf ))m] corresponds to the co
ersion attained when the rate of change in temperatu
nity. This confirms a method commonly used to eval

he dimensionality of growth for glass crystallisation[15].
The integrals in Eq.(7) can be solved numerically or b

sing a suitable approximation for the integrals in Eq.(7),
uch as[6]:

T

Tt

exp

[−Eg

RT ′

]
dT ′ =

(
RT 2

Eg

)
exp

[−Eg

RT

]

−
(

RT 2
t

Eg

)
exp

[−Eg

RTt

]
(9)

This corresponds to a widely used approximation[16,17]
f the so-called Arrhenius integral:

(θ) =
∫ θ

0
exp

(−1

θ

)
dθ ≈ θ2 exp

(−1

θ

)
(10)

here θ =RT/Ea is a dimensionless temperature, with
eneric activation energyEa. Eqs.(9) and (10)are nearly tru

or sufficiently low values ofRT/Eg, and the deviations fro
hese models increase with the values ofθ. In those case
ne may use corrections both for the activation energy
re-exponential factor[6], or a generic correction[6,17,18]:

(θ) = f (θ)θ2 exp

(−1

θ

)
(11)
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For example, integration by parts yields[6,17]:

f (θ) = 1 − 2!θ + 3!θ2 − 4!θ3 + · · ·
= 1 − 2θ + 6θ2 − 24θ3 + · · · (12)

and the first order approximation reduces to the solution pro-
posed by Coats and Redfern[18], with f(θ) = 1 −2θ. Several
reviews (e.g.[16,17]) compared these solutions and also other
generic approximations, such asp(θ) = θk exp(A− B/θ).

Eq. (10) yields reasonably accurate results at least for
θ < 0.05, which corresponds to values of activation energy
>167 kJ/mol, with typical temperatures in the order of
1000 K. In addition, the second term in the right side of Eq.(9)
is often neglected for experiments performed on heating from
room temperature. However, this should not be assumed for
cases when the phase transformations occurs in a relatively
short temperature interval, close to the thermodynamic tran-
sition. The lower integration limit was thus retained in Eq.
(7) and this was combined with Eq.(6) to obtain:

− ln(1 − α) ≈ foNo

[
UoR

Eg|β|
]m

T 2m

{
ε1 exp

[−Eg

RT

]
− ε2

}m

(13)
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3. Transformation peak versus rate of change in
temperature

A commonly used method to obtain the activation energy
of glass crystallisation and similar processes is the Kissinger
equation[20] which describes the dependence of crystallisa-
tion peak temperatureTp on the rate of change in temperature:

ln

(
β

T 2
p

)
= Const.− E

RTp
; (18)

The applicability of Kissinger equation has been discussed
in the literature (e.g.[21]), and must also be revised in the
present case. Note that the actual temperature dependence of
the growth rate deviates strongly from a simple Arrhenius law,
on approaching the thermodynamic transition. Nevertheless,
one may still resort to a typical condition [d2α/dT2]T=Tp

= 0
to obtain the peak of transformation rate. On differentiating
Eqs.(6) and (7), with d2α/dT2 = 0, and on rearranging one
thus obtained:

ln

(
|β|
T 2

p

)
= m−1 ln

{
foNo

(
UoR

Eg

)m}

−
(

Eg

R

)
T−1

p + ln(|ε3|), (19)
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θ

θ

n
− ln(1 − α)

T 2m
≈ ln foNo

UoR

Eg|β|

+m ln

{
ε1 exp

[−Eg

RT

]
− ε2

}
(14)

ith

1 = 1 −
(

1 − �H

Eg

)−1

exp

[(
�H

R

)
(T−1 − T−1

t )

]
(15)

2 =
[

1 −
(

1 − �H

Eg

)−1
](

Tt

T

)2

exp

[−Eg

RTt

]
(16)

Eq.(14)thus shows that the actual behaviour may dev
rom a widely assumed isokinetic model proposed to des
he kinetics of crystallisation[16]:

n

[− ln(1 − α)

T 2m

]
≈ ln

{
foNo

[
UoR

Eg|β|
]m}

− mEg

RT
(17)

Note that this model was based on the assumption th
emperature dependence of growth rate follows the Arrhe
aw. The deviations described by Eq.(14) are even sharp
han for other cases of phase transformations with tem
ture dependent equilibrium states, namely for cases

he temperature dependence of phase boundaries im
hanges in the maximum amount of transformed mat
e.g.[19]).
here the deviations from Kissinger equation are accou
y:

3 = {1 − exp[(�H/R)(1/Tp − 1/Tt)]}2

{1 − (1 − �H/Eg) exp[(�H/R)(1/Tp − 1/Tt)]}
(20)

The actual deviations from the Kissinger equation
lso different from those expected for cases when equ
ium states are temperature dependent[19]. In those case
he maximum amount of transformed phase varies with
ctual temperature range and thus also with the rate of ch

n temperature.

. Dimensionless treatment

In order to minimize the number of relevant parame
ne may use dimensionless variables, thus simplifying
elevant models for the dependence of fraction transfor
n temperature and rate of change in temperature, an
ependence of the transformation peak temperature o
ate of change in temperature. The chosen dimensionles
bles were:

= TR

Eg
(21)

t = TtR

Eg
(22)
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β∗ = βEg

[RT 2
t Uo(foNo)1/m]

(23)

h = �H

RTt
. (24)

On inserting these variables in Eqs.(14)–(16)one thus
obtains:

m−1 ln

[
− ln(1 − α)

(
θt

θ

)2m
]

≈ − ln(β∗) + ln

{
ε1 exp

(−1

θ

)
− ε2

}
(25)

ε1 = 1 − (1 − θth)−1 exp

[
h

(
θt

θ

)
− 1

]
(26)

ε2 = [1 − (1 − θth)−1]

(
θt

θ

)2

exp

(−1

θt

)
(27)

Thus, the kinetics can be expressed in terms of three
dimensionless parameters only. These parameters correspond
to the dimensionless transition temperatureθt=TtR/Eg, the
dimensionless heating rateβ∗ = βEg/[RT 2

t Uo(foNo)1/m],
and the dimensionless enthalpyh=�H/RTt.

Eqs.(19) and (20)can also be expressed in dimensionless
t
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Fig. 1. Temperature dependence of fraction transformed calculated for
TtR/Eg = 0.02,βEg/[RT 2

t Uo(foNo)1/m] = 10−21, and�H/RTt = 1, 10 and
102. The symbols shows finite difference solutions, solid lines represent Eq.
(14), and dashed line is Eq.(17).

to ln (−ln (1−�)) in the range from−4.6 to 1.6. Increas-
ing the heating rate parameter also displaces the relevant
conditions of phase transformations to higher temperatures
(Fig. 2), thus contributing to overcome the transient regime
(Figs. 1 and 3).

Fig. 1also shows that Eq.(14)provides reasonably correct
solutions. These formulae are nearly indistinguishable from
the corresponding finite difference solutions, at least for suff-
iciently smallRTt/Eg (Figs. 4 and 5). Though the errors tend to
increase withRTt/Eg, one may expect reliable solutions, at
least for forRTt/Eg < 0.05, and thus forEg > 20RTt, or >134
kJ/mol, at 800 K. The examples simulated inFig. 4 were
computed for conditions close toRTt/Eg = 0.01,foNo = 10−2

�m−3, m= 3, and growth rateUo exp[−Eg/(RTt)] =
10−2 �m/s, yielding β∗ = βEg/[RT 2

t Uo(foNo)1/m] =
1.73× 10−43. Similarly, for RTt/Eg = 0.05, foNo = 10−2

�m−3, m= 3 and Uoexp[−Eg/(RTt)] = 10−2 �m/s one

F
(

erms as follows:

n

[
|β∗|

(
θt

θp

)2
]

= − 1

θp
+ ln(|ε3|), (28)

p = TpR

Eg
(29)

3 = {1 − exp(−h+ hθt/θp)}2

{1 − (1 − hθt) exp(−h+ hθt/θp)} (30)

. Predictions

Fig. 1 shows finite difference solutions of Eqs.(6) and
7) (symbols) and the corresponding predictions of Eq.(14),
ith ε1 and ε2 described by Eqs.(15) and (16)(solid

ines), for the�→� transformation withTtR/Eg = 0.02,β∗ =
Eg/[RT 2

t Uo(foNo)1/m] = 10−21 and �H/RTt = 1, 10 and
02. Note that the actual range of values of dimension
arameterβ∗ = βEg/[RT 2

t Uo(foNo)1/m], in Fig. 1 corre-
ponds to typical values ofRTt, Eg, No andU in the orde
f 10 kJ/mol, 500 kJ/mol, 10−2 �m−3 and 10−2 �m/s, with
imensionalitym= 3 andfo close to unity. Eq.(17) (dashed

ine) is also shown to demonstrate its limitations, ma
or temperatures close to the transformation temperatuTt.
he transient regime becomes shorter with increasing v
f �H/RTt, which allows a quick decay of the thermod
amic barrier exp [(�H/R)(T−1 − T−1

t )] in the growth rate
Eq. (3)), on heating aboveTt. The most relevant range
alues of fraction transformed (0.01 <� < 0.99) correspond
ig. 2. Transformation peaks for TtR/Eg = 0.02, βEg/[RT 2
t Uo

foNoUo)1/m] = 10−24 and 10−23, �H/RTt = 1.
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Fig. 3. Temperature dependence of fraction transformed calculated for
TtR/Eg = 0.02,βEg/[RT 2

t Uo(foNoUo)1/m] = 10−22, and�H/RTt = 1, 10 and
102. The dashed line is Eq.(17).

obtainsβ∗ = βEg/[RT 2
t Uo(foNo)1/m] = 1.6× 10−10, i.e. in

the range selected forFig. 5.
The dependence of the peak temperature on the heating

rate parameter (Fig. 6) also shows the deviations from a sim-
ple Kissinger equation (dashed line). The symbols show finite
difference solutions and the solid line represents Eq.(19),
whereε3 is described by Eq.(20). Though deviations from
linearity should thus be a clear indication of the failure of
the Kissinger equation, the actual range of results may be too
narrow to distinguish this. In fact, the range of values of heat-
ing rateβ often reduces to about one order of magnitude (e.g.
5–50 K/min) and, in this case, the actual amplitude ofβ* val-
ues also reduces to one order of magnitude. One should thus
use the widest possible range of values of heating rate to avoid

F
�

1 esent
E

Fig. 5. Temperature dependence of fraction transformed forTtR/Eg = 0.05,
�H/RTt = 1 and βEg/[RT 2

t Uo(foNoUo)1/m] = 10−7, 10−8, 10−9, 10−10,
10−11. The symbols are finite difference solutions and solid lines represent
Eq.(14).

drawing incorrect conclusions about the applicability of the
Kissinger equation and extracting meaningless estimates of
the activation energy. Note that the slope varies rapidly on
approaching the transition temperature.

One extension of classical models (e.g. Eq.(17)) is its
modification to obtain the Avrami coefficient, or the dimen-
sionality of growth m[15]. This is often obtained from the
dependence of fraction transformed on the rate of change
in temperature, for a given final temperatureTf . Fortunately,
this rather simple method may still be used for conditions
when Eq.(17)becomes rather crude, i.e. close to the thermo-
dynamic transformation temperatureTt, as described by Eq.
(8).

F ng rate
f ns
a

ig. 4. Temperature dependence of fraction transformed forTtR/Eg = 0.01,
H/RTt = 1 andβEg/[RT 2

t Uo(foNoUo)1/m] = 10−40, 10−41, 10−42, 10−43,
0−44. The symbols are finite difference solutions and solid lines repr
q. (14).
ig. 6. Dependence of transformation peak temperature on the heati
orTtR/Eg = 0.02 and�H/RTt = 1. The symbols are finite difference solutio
nd the solid line represents Eq.(19).
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Fig. 7. Temperature dependence of fraction transformed forTtR/Eg = 0.02,
�H/RTt =−1 andβEg/[RT 2

t Uo(foNoUo)1/m] = −2× 10−24, −5× 10−24,
−10−23, −2× 10−23.

Augis and Bennet[22] proposed an alternative method to
calculate the Avrami coefficient as follows:

m = 2.5RT2
p

E �T
(31)

whereE is the activation energy obtained by the Kissinger
method and�T is the peak half width. This method might be
in error for two different reasons. The first reason is related to
deviations from linearity of Kissinger plots, on approaching
the transition temperatureTt; this is described by Eq.(19), and
demonstrated inFig. 6, yielding crude estimates of the activa-
tion energy. The second reason is related to expected changes
in peak shape, as revealed by the deviations from the temper-
ature dependence of fraction converted (e.g.Figs. 1, 3 and 5).
In fact, other authors[23] also indicated that the Augis and
Bennet method can yield incorrect predictions for conditions
when the JMA models fail. The actual results show that this
includes deviations from the Arrhenius law.

Other results were computed for the inverse�→�
transformation, on cooling below the thermodynamic tran-
sition temperature, i.e.T<Tt (Figs. 7–9). The values

F
a
−

Fig. 9. Dependence of transformation peak temperature on the heating and
cooling rate forTtR/Eg = 0.02 and|�H|/RTt = 1. The symbols are finite dif-
ference solutions and the solid line represents Eq.(19).

of the relevant parametersTtR/Eg, �H/RTt and β∗ =
βEg/[RT 2

t Uo(foNo)1/m] are shown in those figures. It is
easily recognised that the transformation may be halted for
kinetic reasons, before reaching complete transformation.
The upper value of the fraction transformed is dependent on
the cooling rate. These results also confirm that Eq.(14)gives
relatively correct solutions for the�→� transformation.

Eq. (14) can also be used to obtain the thermodynamic
transition temperatureTt, by combining the dependence of
the transformation peak temperature on the heating or cooling
rate (Fig. 9); this corresponds to an inflection point.

6. Conclusions

Commonly used kinetic models for nucleation and growth
do not provide a correct description of phase transformations
near the true thermodynamic transformation temperatureTt.
This occurs because the growth rate vanishes on approach-
ing Tt. Revised models were thus derived to describe the
dependence of fraction transformed on temperature, and the
dependence of the peak transformation temperature on the
rate of heating or cooling. Dimensionless treatment is suitable
to minimize the number of relevant dimensionless parame-
ters. Alternative finite difference solutions were computed to
demonstrate the applicability of the revised models, and their
l ct for
w ow
v

R

s,

378.
ig. 8. Transformation peaks calculated forTtR/Eg = 0.02, �H/RTt =−1
nd βEg/[RT 2

t Uo(foNoUo)1/m] = −2× 10−24, −5× 10−24, −10−23 and
2× 10−23.
imitations. Those revised models are reasonably corre
ide ranges of conditions and only fail for relatively l
alues of activation energy, i.e. typically forEg < 10RTt.
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