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Abstract

The kinetics of phase transformations has been re-examined by considering the case when this is controlled by phase growth, with nearly
instantaneous nucleation. In this case, the phase transformation is likely to occur at temperatures relatively close to the true thermodynamic
transformation temperatufig, and the growth rate vanishes on approaching this temperature. The actual solutions for nucleation and growth
thus deviate from the classical laws proposed to describe the dependence of fraction transformed on temperature and rate of change in
temperature. Similarly, the Kissinger equation becomes a poor description for the dependence of the transformation peak temperature on the
rate of change in temperature. Nevertheless, the Avrami—Nakamura approach can still be used to derive formulae for these cases. Alternative
solutions were thus obtained both by numerical integration and also in the form of nearly correct approximate formulae. These formulae
account for sudden deviations on approaching the transition temperature.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction performed at constant temperature. The corresponding
Avrami—Nakamura model$5,6] have been proposed to

First order phase transitions— 3 can be detrimental or  analyze experiments performed on heating with variable

of outmost importance to many materials due to effects on temperature and were successfully used to analyse the crys-

important applications (e.g. electrical properties) or becausetallisation in glass—ceramic materials. However, the models

they might cause collapse due to excessive lattice mismatchfor non-isothermal conditions are based on the assumption

between theB and o phases. For example, thg—« that the relevant kinetic constant is nearly described by

transition in some ion conducting ceramics (e.go@- a typical Arrhenius dependence, which might be inval-

or LayMo,0Og-based materials) spoils their applicability as idated near the thermodynamic transition, as discussed

solid electrolyteqg1,2], or limits the working temperatures.  below.

In addition, repeated cycling between high and low tempera-  Detailed models have been proposed mainly for homoge-

tures might lead to failure, even for low differences between neous nucleation in glass—ceramic systéfsand also for

the lattice parameters of the high and low temperature phasesphase transformations, with inclusion of the effects of strain
The Johnson—Mehl-Avrami (JMA) theof@,4] is often misfit energy, as described I81:

used to describe the fraction transformed for experiments
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wherel, is a pre-exponential factdgy isthe energy of migra-  occur simultaneously:
tion, and the thermodynamic barrier
—In(1 — a) folU™"*1 (5)

3
y—2 (2) To examine the kinetics with variable temperature one
(AGy — AGs) must take into account the temperature dependence of the
is dependent on the interfacial energythe free energy of ~ growth rate (Eq(3)), and perform a change of independent
transformation per unit volumeaGy = AG/Vin (Vi being variable dt=dT/8, whereg=dT/dtis the rate of change in
the molar volume), and the strain misfit energyGs. temperature. By maintaining the value @throughout the
Egs.(1) and (2)thus show that the temperature dependence experiment, and using typical Avrami—-Nakamura methods
of the rate of nucleation is far from simple. Most models [5,6] one obtains:
are thus derived on assuming simplified conditions such as

AG x

m
separate stages of nucleation and growth, or nearly instanta— In(1 — o) = foNo ( U°> [F(D)]™ (6)
neous nucleation at temperatures which are close to the true Bl
transition temperature. where

The temperature dependence of the growth rate also devi- T
ates from the Arrhenius dependence on approaching theg(7) =/ exp[ 9 } dr’
phase transition temperatufe Though more complex for-

mulae have been proposed for glass—ceramic syq@®is _AH T AH—E
the following formulae is often used to describe the temper- — exp{ } / exp [,g] dr’ (7)
: RT; T RT
ature dependence of growth rate: t
U=U —Eq4 1 AH 7-1_ -1 Note thatAH>0 for the a—f transition occurring at
o®XP| o RT exp R ( -5 T>T;, andAH <O for theB—a atT>T;.

Eq.(6) shows the expected effects of the rate of change in
temperature on the fraction transformed, for a selected value

] ) o of final temperaturdy, i.e.:
U, being a pre-exponential factdg the activation energy

and AH the enthalpy change. E3) will be assumed for  In[— In(1 — «(T7))] = A1(T) —mIn|B] (8)
solid—solid transformations, and will be used to emphasize

the deviations from commonly assumed kinetic models. whereA (Tr) = In [foNo(UoF(T1))™] corresponds to the con-

version attained when the rate of change in temperature is
unity. This confirms a method commonly used to evaluate
the dimensionality of growth for glass crystallisatifd®].

The integrals in Eq(7) can be solved numerically or by
using a suitable approximation for the integrals in EQ,
such ag6]:

_ 2
w0 = () ool w)
T’ Eq RT

exp[ 2

2. Temperature dependence of the fraction
transformed

Nucleation may be a rather complex procg$e,11],
mainly before reaching a steady state regjir#-14]. How- /T

ever, ready nucleation is likely to occur at internal inter-

faces or other discontinuities, such as grain boundaries,

edges, corners, dislocations, etc. For example, kinks are often B (RTt ) exp{ Eg:|

active sites for growth and may yield nearly one-dimensional Eg RT;

growth of plate-like particles by lateral movement of ledges.

In these conditions, nucleation may occur readily at tem-  This corresponds to a widely used approximafib®,17]

peratures which are close to the true transition temperature of the so-called Arrhenius integral:

and the present analysis is thus based on the assumption that )

nucleation is nearly instantaneous. p(6) = / exp<_ > do ~ 62 exp< 1> (10)
On assuming nearly instantaneous nucleation the JMA 0 0

model for the dependence of fraction transformesh time

t, at constant temperature, reducef3d]:

t

(9)

where 6 =RT/E, is a dimensionless temperature, with a

generic activation enerdgys. Eqs.(9) and (10)re nearly true

—In(1 — @) & foNo(UD)" 4) for sufficiently low values oRT/E;, and the deviations from
these models increase with the value®ofn those cases,

whereN, is the number of nuclei anf} is a geometrical ~ one may use corrections both for the activation energy and

factor (e.g. 443 for spherical particles of the new phase), pre-exponential factdé], or a generic correctiof6,17,18]:

and m is the dimensionality of growth for the case of

phase boundary controlled growth. The value of the Avrami ;) = f(6)6% exp <_1> (11)

coefficient increases for cases when nucleation and growth 6
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For example, integration by parts yielfs17]: 3. Transformation peak versus rate of change in

temperature

f(6) =1—210+ 316> — 416° + ...
— 1204667 —243+ ... (12) A commonly used method to obtain the activation energy

of glass crystallisation and similar processes is the Kissinger

and the first order approximation reduces to the solution pro- equatior[20] which describes the dependence of crystallisa-

posed by Coats and Redfd#8], with f(6) = 1 — 26. Several tion peak temperaturg, on the rate of change intemperature:

reviews (e.g[16,17]) compared these solutions and also other

generic approximations, such p@) = 6K exp(A— B/6). B

Eqg. (10) yields reasonably accurate results at least for : TT?

6<0.05, which corresponds to values of activation energy

>167 kJ/mol, with typical temperatures in the order of The applicability of Kissinger equation has been discussed

1000 K. Inaddition, the second term in the right side of(@. in the literature (e.g[21]), and must also be revised in the

is often neglected for experiments performed on heating from present case. Note that the actual temperature dependence of

room temperature. However, this should not be assumed forthe growth rate deviates strongly from a simple Arrhenius law,

cases when the phase transformations occurs in a relativelyon approaching the thermodynamic transition. Nevertheless,

short temperature interval, close to the thermodynamic tran- one may still resort to a typical conditiorde/d 7?] T=T, = 0

sition. The lower integration limit was thus retained in Eq. to obtain the peak of transformation rate. On differentiating

(7) and this was combined with E¢p) to obtain: Egs.(6) and (7), with da/dT?2=0, and on rearranging one

thus obtained:

U R m _E m
Eqlfl RT n (ITf32I> zm_lm{foNo(uoR> }

E
= Const.— —; (18)
RTy

(13) p Eg
o - (52) 7+ e (19)
o[22 )
T2m oo EglBl where the deviations from Kissinger equation are accounted
—Eq by:
emin {evenp | 752 - o2} W - enlampw -y m)?
with T (1— (- AH/Eg)expl(AH/R)(A/ T — 1/ T}
(20)
1—-AH\* 1
1= ( Eq ) exp[(R) (=% The actual deviations from the Kissinger equation are
(15) also different from those expected for cases when equilib-

rium states are temperature depend&#i. In those cases,
the maximum amount of transformed phase varies with the

AHN Y] /T2 B actual temperature range and thus also with the rate of change
gr= [1— ( > ( ) exp [R’Tg} (16)  intemperature.

T

Eq.(14)thus shows that the actual behaviour may deviate 4. Dimensionless treatment
from a widely assumed isokinetic model proposed to describe
the kinetics of crystallisatiofil6]: In order to minimize the number of relevant parameters
m one may use dimensionless variables, thus simplifying the
In {_In(l_“)} ~ In {foNo[ UoR ] } _mEq (17) relevant models for the dependence of fraction transformed
T2m Eg|B| RT on temperature and rate of change in temperature, and the

. . dependence of the transformation peak temperature on the
Note that this model was based on the assumption that the b P b

. rate of change intemperature. The chosen dimensionless vari-

temperature dependence of growth rate follows the Arrhenius .g P

o X ables were:
law. The deviations described by E{.4) are even sharper
than for other cases of phase transformations with temper-, _ TR
ature dependent equilibrium states, namely for cases when Eqg
the temperature dependence of phase boundaries implies
changes in the maximum amount of transformed material 6 = M (22)

(e.g.[19]). Eg

(21)
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E
B = 2 Pty 1/m (23)
[RTFUo(foNo)™™]
AH
h=—. (24)
RT
On inserting these variables in Eq44)—(16)one thus
obtains:

O

m~tin [— In(1— a)(e

)

~ —In(B*) +In {81 exp<_01> — 82} (25)

e1=1—(1—6h) Lexp {h (?) - } (26)
2 J—

e =[1— (1 6u) ] (if) exp(etl) (27)

Thus, the kinetics can be expressed in terms of three
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Fig. 1. Temperature dependence of fraction transformed calculated for
TiR/E;=0.02, BEq/[RTEUo( foNo)/"]=10721, and AH/RT; =1, 10 and

10%. The symbols shows finite difference solutions, solid lines represent Eq.
(14), and dashed line is E(1L7).

dimensionless parameters only. These parameters correspong, In(=In(1—a)) in the range from-4.6 to 1.6. Increas-

to the dimensionless transition temperataeTiR/Ey, the
dimensionless heating rag = BEq/[RTZUo(foNo)*'™],
and the dimensionless enthalpy AH/RT;.

Egs.(19) and (20xan also be expressed in dimensionless
terms as follows:

6\ 2 1
In [Iﬂ*l(;) 1 =~ +In(Je3]), (28)
p P
b — ng (29)
_ _ 2
oy — {1 — exp(—h+ h6:/6p)} (30)

{1— (1 — h6y) exp(—h+ hé/0p)}

5. Predictions

Fig. 1 shows finite difference solutions of Eq&) and
(7) (symbols) and the corresponding predictions of @4),
with g1 and e described by Eqs(15) and (16)(solid
lines), for thex— B transformation withlyR/Ey = 0.02,8*
BEg/[RTZUo( foNo)Y/™ =102 and AH/RT;=1, 10 and
10%. Note that the actual range of values of dimensionless
parameters* = BEq/[RTUo( foNo)*™], in Fig. 1 corre-
sponds to typical values d®T;, Eg, No andU in the order
of 10kJ/mol, 500 kJ/mol, 1 um=2 and 102 wm/s, with
dimensionalitym= 3 andf, close to unity. Eq(17) (dashed
line) is also shown to demonstrate its limitations, mainly
for temperatures close to the transformation temperdature

The transient regime becomes shorter with increasing values

of AH/RT;, which allows a quick decay of the thermody-
namic barrier exp [(AH/R)(T! — Tt_l)] in the growth rate
(Eq. (3)), on heating abov&;. The most relevant range of
values of fraction transformed (0.01x 0.99) corresponds

ing the heating rate parameter also displaces the relevant
conditions of phase transformations to higher temperatures
(Fig. 2), thus contributing to overcome the transient regime
(Figs. 1 and 3).

Fig. 1also shows that Eq14)provides reasonably correct
solutions. These formulae are nearly indistinguishable from
the corresponding finite difference solutions, at least for suff-
iciently smallRTi/Eq (Figs. 4 and 5). Though the errors tend to
increase withRT/Eg, one may expect reliable solutions, at
least for forRTy/Eg < 0.05, and thus foEg > 20R T, or >134
kJ/mol, at 800K. The examples simulatedFig. 4 were
computed for conditions close RT/Eq=0.01,foNo = 1072
pm=3, m=3, and growth rateU, exp[—Ey/(RT)]=
102 pmis, yielding B* = BEg/[RTPUo(foNo)Y ™=
1.73x 1073, Similarly, for RT/Eg=0.05, foNo=10"2
pm=3, m=3 and Ueexp[-Ef/(RT)]=10"2pm/s one

80 RTJEq = 0.02

AH/RT, =1

60

E |
g
= 40
-]
20 -
0
1.00 1.05 1.10
T,
Fig. 2. Transformation peaks for T;R/E;=0.02, ﬂEg/[RTtZUO

(foNoUo)Y™= 10~24 and 1023, AH/RT; = 1.
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Fig. 3. Temperature dependence of fraction transformed calculated for Fig. 5. Temperature dependence of fraction transformediifitE; = 0.05,

TiR/Ey=0.02,8Eq/[RTZUo( foNoUo)*/"]=10722, andAH/RT; =1, 10and AHRT =1 and BEg/[RT2Uo( foNoUs)/"]=1077, 108, 109, 10°20,

10%. The dashed line is E4L7). 10-11, The symbols are finite difference solutions and solid lines represent
Eq. (14).

obtainsg* = BEq/[RT?Uo(foNo)Y/™ =1.6x 10719, i.e. in

the range selected féiig. 5.

The dependence of the peak temperature on the heatingjrawing incorrect conclusions about the applicability of the
rate parameter (Fig. 6) also shows the deviations from a sim-Kissinger equation and extracting meaningless estimates of
ple Kissinger equation (dashed line). The symbols show finite the activation energy. Note that the slope varies rapidly on
difference solutions and the solid line represents #§), approaching the transition temperature.
wherees is described by E(20). Though deviations from One extension of classical models (e.g. ELi)) is its
linearity should thus be a clear indication of the failure of Modification to obtain the Avrami coefficient, or the dimen-
the Kissinger equation, the actual range of results may be toosionality of growth m[15]. This is often obtained from the
narrow to distinguish this. In fact, the range of values of heat- dependence of fraction transformed on the rate of change
ing rateg often reduces to about one order of magnitude (e.g. in temperature, for a given final temperatd¥eFortunately,
5-50 K/min) and, in this case, the actual amplitudg’o¥al- this rather simple method may still be used for conditions
ues also reduces to one order of magnitude. One should thugvhen Eq(17)becomes rather crude, i.e. close to the thermo-
use the widest possible range of values of heating rate to avoigdynamic transformation temperatufg as described by Eq.

(8).
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Fig. 4. Temperature dependence of fraction transformedfigy =0.01,
AHIRT =1 andBEq/[RTZUo( foNoUo)Y ™ =10-40, 10-41, 10742, 10743, Fig. 6. Dependence of transformation peak temperature on the heating rate
104, The symbols are finite difference solutions and solid lines represent for TiR/Ey=0.02andAH/RT; = 1. The symbols are finite difference solutions
Eq.(14). and the solid line represents E49).
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Fig. 7. Temperature dependence of fraction transformedfigy = 0.02, 0.98 . 1 L 1 L
AHIRT; =1 andBEg/[RTZUo(foNoUo)Y ™| = —2 x 10724, —5 x 10-4, -1 0 1
-10728, —2x 1072, B*x10%

Augis and Benne[122] pr-oposed an alternative method to Fig. 9. Dependence of transformation peak temperature on the heating and
calculate the Avrami coefficient as follows: cooling rate fofT{R/Ey=0.02 and AH|/RT; = 1. The symhbols are finite dif-
ference solutions and the solid line represent: .
2.5RT? presents(E)
- (31)

EAT of the relevant parameter$;R/E;, AH/RT; and Bx =

whereE is the activation energy obtained by the Kissinger BEg/[RTZUo(foNo)*/™] are shown in those figures. It is
method and\ T is the peak half width. This method might be easily recognised that the transformation may be halted for
in error for two different reasons. The first reason is related to kinetic reasons, before reaching complete transformation.
deviations from linearity of Kissinger plots, on approaching The upper value of the fraction transformed is dependent on
the transition temperatuffg; this is described by E¢19), and the cooling rate. These results also confirm tha{ E4) gives
demonstrated iRig. 6, yielding crude estimates of the activa- relatively correct solutions for thé— « transformation.
tion energy. The second reason is related to expected changes Eg. (14) can also be used to obtain the thermodynamic
in peak shape, as revealed by the deviations from the tempertransition temperaturé;, by combining the dependence of
ature dependence of fraction converted (Eigs. 1, 3and5).  thetransformation peak temperature on the heating or cooling
In fact, other authorf23] also indicated that the Augis and rate (Fig. 9); this corresponds to an inflection point.
Bennet method can yield incorrect predictions for conditions
when the IMA models fail. The actual results show that this
includes deviations from the Arrhenius law.

Other results were computed for the inverfes>a
transformation, on cooling below the thermodynamic tran-
sition temperature, i.eT<T; (Figs. 7-9). The values

6. Conclusions

Commonly used kinetic models for nucleation and growth
do not provide a correct description of phase transformations
near the true thermodynamic transformation temperdfure
This occurs because the growth rate vanishes on approach-

0 ing Ti. Revised models were thus derived to describe the
dependence of fraction transformed on temperature, and the
dependence of the peak transformation temperature on the

5 rate of heating or cooling. Dimensionless treatmentis suitable
E“ to minimize the number of relevant dimensionless parame-
- RT/E,=0.02 ters. Alternative finite _dlffe_r_ence SO|UthnS were computed tq
35 a0 L AHRT =1 demonstrate the applicability of the revised models, and their
I limitations. Those revised models are reasonably correct for
Pyl wide ranges.of .conditions gnd onlly fail for relatively low
I values of activation energy, i.e. typically f&g < 10RT;.
-15 e
0.90 0.95 1.00
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